Time-delayed nonlocal response inducing traveling temporal localized structures

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence, Asymptotics and Uniqueness of Traveling Waves for Nonlocal Diffusion Systems with Delayed Nonlocal Response

Abstract. In this paper, we deal with the existence, asymptotic behavior and uniqueness of travelingwaves for nonlocal diffusion systems with delay and global response. We first obtain the existence of traveling wave front by using upperlower solutions method and Schauder’s fixed point theorem for c > c∗ and using a limiting argument for c = c∗. Secondly, we find a priori asymptotic behavior of...

متن کامل

Traveling Fronts in Monostable Equations with Nonlocal Delayed Effects

In this paper, we study the existence, uniqueness and stability of traveling wave fronts in the following nonlocal reaction–diffusion equation with delay ∂u (x, t) ∂t = d u (x, t)+ f ⎛ ⎝u (x, t) , ∞ ∫ −∞ h (x − y) u (y, t − τ) dy ⎞ ⎠. Under the monostable assumption, we show that there exists a minimal wave speed c∗ > 0, such that the equation has no traveling wave front for 0 < c < c∗ and a tr...

متن کامل

Global Stability of Monostable Traveling Waves For Nonlocal Time-Delayed Reaction-Diffusion Equations

This short note is to fix the gap for the proof of Lemma 3.8 in our previous paper [M. Mei, C. Ou and X.-Q. Zhao, SIAM J. Math. Anal., 42 (2010) 2762-2790].

متن کامل

Optimization of nonlocal time-delayed feedback controllers

A class of Pyragas type nonlocal feedback controllers with timedelay is investigated for the Schlögl model. The main goal is to find an optimal kernel in the controller such that the associated solution of the controlled equation is as close as possible to a desired spatio-temporal pattern. An optimal kernel is the solution to a nonlinear optimal control problem with the kernel taken as control...

متن کامل

Continuation of Localized Coherent Structures in Nonlocal Neural Field Equations

We study localised activity patterns in neural field equations posed on the Euclidean plane; such models are commonly used to describe the coarse-grained activity of large ensembles of cortical neurons in a spatially continuous way. We employ matrix-free Newton-Krylov solvers and perform numerical continuation of localised patterns directly on the integral form of the equation. This opens up th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Research

سال: 2020

ISSN: 2643-1564

DOI: 10.1103/physrevresearch.2.013024